
Skate AMM: Unifying Liquidity in One State

Machine

Siddharth Lalwani

Skate

March 5, 2025

Abstract

Conventional automated market makers (AMMs) are inherently limited by their
monolithic design – each operates on a single blockchain, leading to fragmented liq-
uidity, isolated pricing curves, and suboptimal capital utilization. In this paper, we
introduce Skate AMM, a novel protocol that implements a stateless application design
pattern to enable a single AMM to operate seamlessly across multiple virtual ma-
chine environments (e.g., EVM, Solana, MoveVM, TonVM), maintaining one canonical
pricing curve across disparate blockchain ecosystems. Liquidity deposited on any sup-
ported chain is integrated into one canonical liquidity state, maintained exclusively on
a dedicated hub chain. Although token custody remains decentralized on individual
chains (the spokes), core pricing logic, liquidity state, and tick data are shared glob-
ally. This unified state is secured via EigenLayer’s economic trust, wherein a quorum
of AVS operators (restaked node operators subject to slashing) collectively attest to
state updates by producing tasks on the hub that trigger callbacks on the periphery
via a hub-and-spoke AVS model. We also introduce new mathematical formulations
to describe the unified pricing curve and present an analysis of loss-versus rebalancing
(LVR), showing how the Skate design can minimizes toxic flows and arbitrage losses.

1

Contents

1 Context 3

2 Stateless Application Pattern: Kernel–Periphery Model 3
2.1 Kernel (Hub Chain) . 4
2.2 Periphery (Spoke Chains) . 4
2.3 EigenLayer AVS for State Synchronization 4
2.4 Execution Network . 4
2.5 Skate token: Alignment and Security . 4

3 Protocol Mechanics and Swap Execution 5
3.1 Skate AMM Representation . 5
3.2 Swap Execution Sequence . 6
3.3 Adding Liquidity Sequence . 7
3.4 Robust Security and Mitigation Strategies 7

4 Liquidity Providers 8
4.1 LP Benefits in a Unified AMM . 8
4.2 LP Fee Optimization and Global Fee Sharing 8
4.3 Impact on FLAIR Metric . 10

5 Swap Size Limitations and Local Liquidity Constraints 10
5.1 Chain-Specific Fee Component . 11
5.2 Incentives for Rebalancing Inventory . 11

6 Future Vision: Skate AMM v2 and Beyond 13
6.1 Skate AMM v2: Cross-Chain Extensions . 13

7 Conclusion 13

A Formal Derivations and Comparative Analysis 15
A.1 Unified Pricing and Liquidity Invariants . 15
A.2 LVR Quantification . 15
A.3 Dynamic Fee Adjustment Model . 15
A.4 Equilibrium Model for Liquidity Movement 16

A References 17

2

1 Context

The rapid expansion of layer-1 blockchains and their diverse virtual machine (VM) envi-
ronments (e.g., the Ethereum Virtual Machine (EVM), Solana VM, TON VM, Move VM)
has led to a fragmented decentralized finance (DeFi) landscape. Liquidity in traditional
automated market makers (AMMs) is siloed on each chain, leading to price disparities for
assets and a suboptimal user experience, especially on newer or less liquid networks. For
example, Uniswap v3 forks deployed on separate chains must each bootstrap liquidity in-
dependently, often yielding shallower liquidity pools and higher slippage for traders. This
fragmentation compels users to either navigate complex cross-chain interactions or accept
suboptimal exchange rates, while liquidity providers (LPs) are forced to split their capital
across isolated pools—diminishing fee revenues and increasing exposure to impermanent
loss.

Skate provides infrastructure enabling the development of stateless applications, directly ad-
dressing the limitations of monolithic AMM designs that maintain separate liquidity states
across different blockchains. Skate AMM leverages this infrastructure by implementing a
stateless application model, consolidating liquidity into a single global state managed via
a single Kernel smart contract deployed on a dedicated hub chain. Lightweight Periphery
contracts deployed across each blockchain handle user interactions, Eigenlayer Autonomous
Verifiable Service (AVS) signature verification, asset custody, and asset settlement but do
not store pricing information. State consistency across chains is maintained through Skate’s
AVS, ensuring decentralized, trustless validation of all state updates.

This approach establishes a unified pricing curve and significantly enhances liquidity depth,
reduces toxic flow for LPs, and maximizes capital efficiency. It provides substantial benefits
for asset issuers:

• Immediate Market Depth and Stability: Unified pricing ensures assets experi-
ence immediate deep liquidity, reducing slippage and arbitrage.

• Reduced Capital Requirements: A single liquidity deposit achieves omnichain
liquidity depth, minimizing the capital needed.

• Operational Simplification: Asset issuers can focus on strategic initiatives rather
than managing fragmented liquidity pools across multiple chains.

2 Stateless Application Pattern: Kernel–Periphery Model

The Stateless Application Design Pattern utilized by Skate AMM addresses the ineffi-
ciencies inherent in maintaining independent liquidity states across multiple blockchains.
This architecture is inspired by established client-server paradigms prevalent in traditional
distributed computing systems, where lightweight client-side components interact with cen-
tralized servers responsible for computation-intensive tasks and unified state management.
Similar to how traditional web applications leverage lightweight clients to delegate com-
putation and data consistency responsibilities to central backend servers, Skate’s model
applies analogous principles to blockchain infrastructure. It distinctly separates local as-
set management and user interactions from a shared computational logic, responsible for
global liquidity management, pricing mechanisms, and invariant enforcement deployed on
a dedicated hub chain. Cross-chain interactions and state updates are ensured through
decentralized and economically secured validation provided by Skate’s AVS.

3

2.1 Kernel (Hub Chain)

The Kernel smart contract is deployed on a designated hub chain and holds the global liq-
uidity pools, pricing, and tick data. It implements the core AMM logic using concentrated
liquidity invariants (as used in Uniswap v3) but applied to a unified multi-chain context.
All trades and liquidity changes are computed in the Kernel; that is, the Kernel enforces
the constant-product invariant and updates the global state accordingly. Importantly, the
Kernel does not manage token custody; instead, it aggregates liquidity positions provided
by users across all chains.

2.2 Periphery (Spoke Chains)

On each supported chain, a Periphery contract is deployed to serve as the user interface.
The Periphery handles local token custody and records user intents (such as swaps or
liquidity provision). It then forwards these intents to the Kernel via cross-chain messages;
the Kernel’s response is delivered as a callback to the Periphery through Skate’s AVS in a
hub-and-spoke model. Periphery contracts do not perform any pricing computations; they
rely entirely on the Kernel’s global state. This separation minimizes on-chain complexity
and ensures that users across all chains experience a single, unified market.

2.3 EigenLayer AVS for State Synchronization

Skate leverages its EigenLayer’s AVS to securely coordinate between the Kernel and Periph-
ery contracts. AVS consists of a decentralized network of operators who, by restaking assets,
provide a secure, trust-minimized method for attesting cross-chain messages. The proto-
col supports a dual-staking model, incorporating both restaked ETH and staked $SKATE
tokens to enhance economic security. When a user submits a transaction to a Periphery
contract, the event is relayed by AVS nodes to the Kernel. Likewise, when the Kernel
processes a transaction, its output is attested by the AVS and returned as a callback to the
appropriate Periphery. This mechanism guarantees that state updates and trade executions
are validated by a quorum of economically incentivized operators.

2.4 Execution Network

The Execution Network within the Skate architecture consists of Executors acting as lis-
teners for actions initiated by users on Periphery (spoke chain) contracts. These Executors
are responsible for capturing user’s intents, relaying them securely to the Kernel on the
hub chain for execution. Executors ensure timely and accurate execution of state updates
in the Kernel, maintaining consistency and responsiveness across the entire multi-chain
environment.

In future iterations, Skate intends to support advanced, intent-centric designs by intro-
ducing precompile contracts on the hub chain. These precompiles will directly facilitate
signature verification for user interactions originating from altVM environments, such as
ed25519 signatures.

2.5 Skate token: Alignment and Security

The Skate token is a core component of the protocol’s design, underpinning both economic
security and governance within a decentralized framework. Its primary functions are as
follows:

4

• Economic Security via Staking. Skate tokens are staked within the EigenLayer dual-
staking framework to serve as collateral for Skate’s AVS. This mechanism economically
incentivizes AVS operators to comply with protocol requirements, thereby ensuring the
security of cross-chain operations.

• DAO Governance. Skate token holders engage in decentralized governance through
the Skate DAO, enabling the community to vote on protocol modifications and upgrades.

• Staker Incentives. A portion of the trading fees generated by Skate AMM is allocated
to Skate token stakers. This incentive mechanism rewards token holders in proportion
to their stake and supports alignment with long term protocol growth.

3 Protocol Mechanics and Swap Execution

3.1 Skate AMM Representation

In Skate AMM, rather than deploying independent AMM contracts on each individual
chain, the protocol enforces a single, unified AMM with a canonical liquidity state on a
dedicated hub chain. Each supported chain hosts a lightweight Periphery contract for local
token custody and user-facing interactions, but all core state—liquidity positions, pricing,
and tick data—is consolidated in a central Kernel contract on the hub.

Whenever liquidity is deposited on any chain, these funds are immediately integrated into
the global reserve balances for the relevant token pair. Let X and Y denote the total aggre-
gated reserves of tokens X and Y , respectively, maintained by the Kernel. The constant-
product invariant

X · Y = L2

governs all swaps, where L is the invariant liquidity parameter capturing the active liquidity
range. This formulation parallels the mechanism employed by conventional concentrated
AMMs (e.g., Uniswap v3) over a specified price interval, ensuring that any infinitesimal
increase in one reserve mandates a corresponding decrease in the other to preserve X · Y .

A principal motivation behind this unified design is to address cross-chain information
asymmetry.

Figure 1: Absolute Price Difference between the biggest ETH/USDC pool on Base and
Arbitrum(in bps)

5

Such discrepancies open windows for arbitrage and create inefficient price quotes for the
same asset pair across chains. Empirical data from the largest 5 bps ETH/USDC pools on
Base and Arbitrum, for instance, shows that the absolute price difference may vary from
nearly 0 to over 40 basis points at certain time intervals. These spikes, reflected by changes
in color intensity in the heatmap, typically arise when one chain’s pool lags in updating
to the global market rate. In a fragmented architecture, sophisticated traders can exploit
these short-lived disparities, disadvantaging less informed participants (Passive LPs in this
case) and degrading overall market efficiency.

3.2 Swap Execution Sequence

When a user initiates a swap via a Periphery contract (for example, on Chain A), the
process is as follows:

Figure 2: User Interaction flow for a swap on Skate AMM

1. Swap Intent Submission: The user submits a swap intent by staging and locking
their input tokens in the Periphery contract.

2. Kernel Processing: An executor retrieves the swap intent and forwards it to the
Kernel on the hub chain. The Kernel calculates the swap output using the global
liquidity pool. For a trade with an input ∆x of token X, the invariant(

Xtotal +∆x
)(

Ytotal −∆y
)
= Xtotal · Ytotal

is used to compute the output:

∆y = Ytotal −
Xtotal · Ytotal

Xtotal + (1− γ)∆x
,

where γ denotes the trading fee. For swaps crossing tick boundaries, the Kernel
applies piecewise computations based on novel tick-based mathematics analogous to
those used in conventional concentrated AMMs.

6

3. AVS Attestation: Skate’s EigenLayer AVS operators verify the Kernel’s state up-
date and produce an aggregated BLS signature attesting to the valid execution of the
swap.

4. Settlement on the Periphery: The Kernel’s attested result is sent back via an AVS
callback to the originating Periphery contract on Chain A. The Periphery contract
verifies the aggregated signature and transfers ∆y of token Y to the user, updating
its local state accordingly.

Future iterations of Skate AMM will support seamless, atomic cross-chain swaps via AVS
callbacks, allowing users to swap token X on one chain for token Y on another without
manual bridging, while preserving robust security and fee structures.

3.3 Adding Liquidity Sequence

When adding liquidity, users interact with the Periphery contract by specifying a tick range
and depositing token amounts in the corresponding ratio.

1. Liquidity Intent Submission: The user stages one or both tokens on the Periphery
contract, locking them to create an addLiquidity Action.

2. Kernel Processing: An Executor listens to the Action and forwards it to the Kernel
on the hub chain. The Kernel updates the global tick bitmap and calculates the
liquidity using conventional constant product concentrated AMM equation:

L = ∆x ·
√
Pb ·

√
Pc√

Pb −
√
Pc

,

L =
∆y√

Pc −
√
Pa

,

with the lesser of the two values being assigned to the user.

3. AVS Attestation: EigenLayer AVS operators verify the Kernel’s state update and
produce an aggregated signature attesting to the successful execution of the liquidity
Intent.

4. Settlement on the Periphery: An executor picks up the resulting Task and settles
the user on the Periphery contract, allowing withdrawal of any unused tokens. The
difference between the staged and utilized amounts reflects minor price movements
during execution.

3.4 Robust Security and Mitigation Strategies

Skate AMM incorporates comprehensive security measures to address potential attack vec-
tors and ensure robust operation across chains.

1. Cross-Chain Front-Running: Unified state management in the Kernel prevents
price disparities across chains, effectively neutralizing cross-chain front-running ad-
vantages. All swap intents are processed in a single global queue, reducing risks to
those typical of conventional AMMs.

2. Price Manipulation and Spoofing: Since liquidity is aggregated globally, any
attempt to manipulate the price must overcome the entire pool’s depth. Localized
imbalances are immediately arbitraged away, with tick-based updates enforcing con-
sistent pricing.

7

3. Blockchain Reorganizations: Swap and liquidity intents are executed only after
the originating chain achieves sufficient confirmation. In the event of a reorganization,
pending swaps are canceled or reversed via a two-phase commit protocol, ensuring
atomicity and preventing double-spend or asset loss.

4. Denial-of-Service and Network Stability: Although the Kernel is a centralized
component, its design incorporates redundancy and secure message relaying. Con-
firmation timeouts and off-chain relayers mitigate risks from network partitioning or
transient DoS attacks, maintaining state integrity and protecting user funds.

5. Liquidity Provider Safeguards: LP funds remain secure as Periphery contracts
maintain custody, and state updates occur only after verifiable, attested actions. The
AVS attestation process further protects against unauthorized modifications, ensuring
a fair balance between user and provider interests.

4 Liquidity Providers

4.1 LP Benefits in a Unified AMM

By providing liquidity to the unified pool, LPs capture fees from trading activity across all
chains. Instead of splitting capital among multiple isolated pools, LPs deposit once into
the global pool, earning a pro-rata share of total fee revenue. This yields:

• Higher Fee Revenue: Aggregated trading volume results in greater fee collection.

• Reduced Arbitrage Losses: A single, unified price minimizes price discrepancies,
reducing the losses arbitrageurs extract.

• Enhanced Capital Efficiency: The effective liquidity is greater, resulting in lower
slippage for large trades.

Moreover, because the global state informs pricing on every chain, LPs earn fees from
trading volume across all chains even if their liquidity is only physically present on one
chain. In equilibrium, only enough liquidity is needed locally to support swaps in both
directions – if one asset pair has deep liquidity on even one chain, that liquidity is effectively
available globally.

4.2 LP Fee Optimization and Global Fee Sharing

Consider a cross-chain AMM operating over N chains, where trading activity and fee
accrual are measured on a per-block basis. Let Qi denote the trading volume on chain i
during a block, and fi the fee rate applied on that chain. Thus, the fee revenue accrued on
chain i in that block is:

Fi = fiQi.

An LP allocates a total liquidity budget M across the N chains. Denote by ℓi the liquidity
allocated to chain i, subject to

N∑
i=1

ℓi = M.

We assume that trading volume Qi depends on both ℓi (with higher liquidity attracting
more volume) and fi (with higher fees potentially reducing volume); that is,

Qi = Qi(ℓi, fi),

8

where Qi is increasing in ℓi and decreasing in fi. Consequently, the fee revenue on chain i
is given by

Fi(ℓi, fi) = fiQi(ℓi, fi).

An LP’s revenue from chain i is proportional to the liquidity ℓi they provide relative to the
total active liquidity on that chain, denoted by Lactive

i . Thus, the LP’s per-block revenue
from chain i is

Πi = Fi(ℓi, fi) ·
ℓi

Lactive
i

.

In the Skate AMM, however, a unified liquidity state is maintained, so that fee revenue is
shared globally. Let Lactive denote the total active liquidity across all chains. Then, the
LP’s global fee revenue in a block is given by

ΠLP =
MLP

Lactive

N∑
i=1

Fi(ℓi, fi)

whereMLP is the LP’s liquidity allocated in the active price range. This formulation implies
that the LP’s revenue is a pro-rata share of the total fee revenue, regardless of which chain
generates the trades.

Define the marginal fee revenue per unit liquidity on chain i as:

vi(ℓi, fi) :=
∂

∂ℓi

[
fiQi(ℓi, fi)

]
= fi

∂Qi(ℓi, fi)

∂ℓi
.

In an optimal allocation, LPs will reallocate their liquidity across chains such that the
marginal revenue is equalized:

v1(ℓ
∗
1, f1) = v2(ℓ

∗
2, f2) = · · · = vN (ℓ∗N , fN) = λ,

where λ is the Lagrange multiplier corresponding to the liquidity constraint. This condition,
derived via optimization theory, ensures that no LP can increase its overall fee income by
shifting liquidity from one chain to another.

Moreover, the fee rates fi are dynamically adjusted to help achieve this equilibrium. If,
for instance, chain k exhibits a relatively higher marginal revenue vk (due to, say, a surge
in trading volume), then reducing fk slightly can attract additional volume and drive vk
down toward the equilibrium level. Conversely, if vm is too low on chain m, increasing fm
can boost fee income per unit volume, thereby raising vm. Through these adjustments, the
system maintains:

v1 ≈ v2 ≈ · · · ≈ vN ,

ensuring that liquidity is optimally utilized across the network.

Global Fee Sharing vs. Siloed AMMs. In conventional, siloed AMMs, LP revenue
on chain i would depend solely on Fi and the LP’s fraction of Lactive

i :

Πsilo
i =

ℓi

Lactive
i

Fi(ℓi, fi).

This dependence on local trading volume means that an LP’s earnings can be significantly
lower if that particular chain experiences low volume.

9

In contrast, Skate AMM aggregates fee revenue across all chains, such that the LP’s per-
block revenue is:

ΠLP =
MLP

Lactive

N∑
i=1

fiQi(ℓi, fi).

Since
N∑
i=1

fiQi(ℓi, fi) > fj Qj(ℓj , fj) for any individual chain j,

the expected revenue in Skate AMM is higher than that in any monolithic AMM. Addi-
tionally, the probability that the LP earns zero fees in a given block is reduced because it
requires all chains to simultaneously have zero trading volume.

Conclusion. The mathematical analysis above demonstrates that, under optimal liquid-
ity allocation and dynamic fee rate adjustments, the Skate AMM’s unified model yields
higher expected fee revenue and lower income volatility for LPs compared to siloed, single-
chain AMMs. This global fee sharing mechanism, which equalizes the marginal fee revenue
across chains, ensures that LPs are probabilistically better off participating in Skate AMM.

4.3 Impact on FLAIR Metric

The FLAIR (Fee Liquidity-Adjusted Instantaneous Return) metric, originally introduced
by Uniswap Labs, measures the fee return that a liquidity provider (LP) earns relative to
the liquidity they deploy. Skate AMM’s unified liquidity model fundamentally alters how
fee returns are measured by the FLAIR metric. Traditionally, FLAIR quantifies an LP’s
fee income relative to their liquidity contribution in a single, isolated pool. In contrast,
Skate AMM aggregates liquidity across chains into one global state, eliminating the need
for separate FLAIR scores per chain. With a single liquidity bitmap governing the entire
system, fees earned from trades on any chain contribute to a consolidated fee revenue,
thereby enhancing the overall fee return on LP capital.

This integrated model means that the effectiveness of an LP is measured not only by the
fee yield on the chain where they provide liquidity, but also by the trading volume on
other chains. In effect, LPs earn fees across the entire ecosystem, which raises the global
fee return compared to fragmented models. Dynamic fee mechanisms further optimize this
process by adjusting fees based on local liquidity imbalances, incentivizing rebalancing that
boosts fee collection.

Further theoretical research on the impact of dynamic fee adjustments on FLAIR perfor-
mance is underway and will be detailed in a forthcoming study.

5 Swap Size Limitations and Local Liquidity Constraints

A notable challenge in a multi-chain context is that although the unified global state offers
substantial liquidity, the execution of swaps on an individual chain is constrained by the
locally available liquidity (denoted Llocal). That is, while the pricing mechanism reflects
the total aggregated liquidity, each swap operation is limited to drawing from the tokens
available on the chain where the transaction is performed. For example, if Chain A holds
only $100 worth of token X despite the global pool aggregating $1100, the swap executed
on Chain A is restricted to that $100 inventory.

10

In version 1, LPs are permitted to withdraw their entire liquidity only if Llocal is adequate
to satisfy their position; otherwise, only a partial withdrawal is feasible. This constraint
is regarded as advantageous, as it motivates LPs to initiate cross-chain rebalancing—or
encourages systematic bots to perform such adjustments—through the modulation of fees.
Moreover, the dynamic fee mechanism, described in detail below, further promotes the
reallocation of liquidity to locations where it is most needed, thereby ensuring that although
the swap capacity on each chain is limited by Llocal, the effective pricing depth accurately
reflects the total global liquidity.

5.1 Chain-Specific Fee Component

The dynamic, chain-specific fee in Skate AMM will be designed to convert local liquidity
imbalances into economic incentives that prompt systematic participants to replenish the
scarce asset. This fee is applied whenever local liquidity is replenished, whether through
swap flows that bring in the underrepresented token or through additional liquidity provi-
sion and is tailored to each chain’s conditions.

The fee mechanism is charged in two distinct ways:

1. Swapping in Scarce Assets: In Skate AMM, a chain-specific fee mechanism is used
to mitigate local liquidity imbalances. Each chain monitors its own token inventories
and computes a local imbalance metric, ∆i. A dynamic fee function Φi(∆i) is then
applied to adjust the effective fee. If f0 is the base fee of the pool, the effective fee on
chain i is given by:

fi = f0 · Φi(∆i).

This dynamic fee increases when the asset being swapped out is scarcer, thereby deter-
ring further depletion and encouraging swaps that replenish the local pool.

2. Adding Liquidity with Scarce Assets: When an LP adds liquidity on a chain where
a token is scarce, the fee premium earned on subsequent trades serves as an incentive.
Specifically, if an LP provides liquidity at an out-of-range position where the dynamic
fee premium is defined as

fpremium
i = fi(q)− f0,

and the LP expects to hold this position for a period T incurring a holding cost Ch per
unit liquidity, then the strategy is profitable provided that:

fpremium
i × T > Ch.

This condition indicates that the additional fee income compensates for the opportunity
cost of providing liquidity in a scarce environment.

Note: The exact formulation and calibration of the chain-specific fee mechanism remain
active areas of research. The equations and conditions delineated above serve an illustrative
purpose and are amenable to further refinement in light of empirical observations and the
dynamic evolution of market conditions.

5.2 Incentives for Rebalancing Inventory

The dynamic, chain-specific fee in Skate AMM is applied whenever a chain’s local liquidity
is replenished—either through swaps that bring in the scarce token or by adding liquidity
directly. This fee is designed to incentivize systematic participants to replenish the asset

11

that is underrepresented in the local liquidity pool, without necessarily requiring positions
to be extremely out-of-range.

We consider two primary ways to get incentivized:

Mode 1: Out-of-Range Liquidity Provisioning. Systematic players may choose to
provide liquidity at price ranges outside the current active band. These out-of-range po-
sitions do not incur impermanent loss risk since they remain inactive unless the market
moves dramatically. The incentive is driven by the chain-specific fee premium. Formally,
let Ch denote the holding cost per unit liquidity per unit time and T the expected holding
period. If the additional fee premium earned per unit liquidity, defined as

fpremium
i = fi(q)− f0,

satisfies
fpremium
i × T > Ch,

then it is profitable for systematic players to add out-of-range liquidity. In this way, the fee
mechanism converts local scarcity into an economic incentive to replenish the underrepre-
sented asset.

Mode 2: Round-Trip Cross-Chain Rebalancing (v2). In the envisioned Skate
AMM v2, enhanced cross-chain swap functionality will enable systematic bots to perform
round-trip swaps that directly rebalance liquidity across chains. The process unfolds as
follows:

Step 1: Initiate Cross-Chain Swap: On Chain A—where an asset (e.g., ETH) is
scarce—the bot initiates a swap converting ETH to USDC. The elevated dynamic
fee on Chain A, fA(q), reflects the local scarcity.

Step 2: Bridge Transfer: The resulting USDC is bridged to Chain B, where the same
asset is abundant.

Step 3: Intra-Chain Rebalancing Swap: On Chain B, the bot executes an intra-chain
swap converting USDC back to ETH, thereby restoring the ETH inventory on
Chain A indirectly.

The incentive for the bot to perform this round-trip rebalancing is captured by the inequal-
ity:

fpremium
A × q > Crt,

where fpremium
A is the fee premium on Chain A (i.e., the excess fee due to scarcity), q is

the trade size, and Crt represents the combined cost of the round-trip swap (including fees
on the destination chain and bridging costs). When this condition holds, the dynamic fee
premium compensates for the costs, thereby incentivizing cross-chain rebalancing.

In summary, the chain-specific fee mechanism in Skate AMM not only compensates LPs
for local liquidity imbalances but also creates two distinct incentive modes for systematic
participants. In both modes, the goal is to replenish the scarce asset on a chain—ensuring
that even though swap execution is limited by local liquidity, the effective pricing depth
benefits from the aggregated global state. In equilibrium, the model implies that each chain
requires sufficient liquidity to support bidirectional swaps, with the liquidity on any one
chain potentially reflected across the network.

12

6 Future Vision: Skate AMM v2 and Beyond

6.1 Skate AMM v2: Cross-Chain Extensions

Skate AMM v1 implements a unified liquidity state with intra-chain swaps based on a global
pricing curve. In Skate AMM v2, the protocol is extended to support atomic cross-chain
swaps. The technical objectives for v2 are as follows:

Objective 1) Atomic Cross-Chain Swaps: In v2, a swap initiated on one chain (e.g.,
Chain A) will result in the output being delivered atomically on a different
chain (e.g., Chain B). Specifically, the Kernel performs all pricing compu-
tations using the unified liquidity state, and the swap result is relayed as a
callback via the AVS mechanism to the Periphery contract on the destina-
tion chain. This design preserves atomicity across chains while maintaining
consistency in security, execution, and fee models with v1. Enhanced cross-
chain coordination and robust inventory management are incorporated to
mitigate latency.

Objective 2) Enhanced Rebalancing via Round-Trip Swaps: Systematic partici-
pants are enabled to execute cross-chain round-trip swaps that earn dynamic
fee premiums while rebalancing local token inventories. For instance, if a
token (e.g., ETH in an ETH/USDC pair) is underrepresented on Chain A,
a participant can:

(i) Execute a cross-chain swap converting ETH on Chain A to USDC on
Chain B, thereby increasing the ETH inventory on Chain A via fee
incentives.

(i) Subsequently, perform an intra-chain swap on Chain B to convert
USDC back to ETH, rebalancing the exposure on Chain B.

The profitability of such operations is determined by the fee differentials
exceeding the round-trip and bridging costs.

Objective 3) Inter-Chain Liquidity Provisioning: v2 facilitates liquidity provision-
ing across chains by allowing users to add liquidity on one chain and remove
it on another. This mechanism optimizes capital allocation and liquidity
management by leveraging the unified global liquidity state, independent of
the chain on which the tokens are physically held.

These extensions refine the unified global state concept by integrating atomic cross-chain
swap execution and advanced rebalancing strategies. The design ensures that local liquidity
constraints are efficiently managed via dynamic fee adjustments and inter-chain coordina-
tion, thereby preserving the global pricing mechanism established in v1.

7 Conclusion

Skate AMM provides a novel approach to decentralized liquidity provision by unifying
liquidity across multiple blockchains into a single global state. Through its stateless Kernel–
Periphery architecture, Skate enables intra-chain swaps with pricing derived from a unified
liquidity pool, dramatically reducing slippage, improving capital efficiency, and mitigating
losses due to liquidity fragmentation. By leveraging EigenLayer’s AVS for secure cross-chain

13

communication, Skate provides a robust framework where LPs earn fees from a global pool
and arbitrage opportunities are minimized.

The mathematical and game-theoretic analysis presented indicates that a unified AMM
can enhance fee revenue efficiency, reduces Loss-Versus-Rebalancing (LVR), and enhances
the overall user experience compared to fragmented Uniswap v3 forks. Additionally, asset
issuers benefit by no longer having to bootstrap liquidity separately in each chain, thereby
reducing capital requirements and ensuring deep liquidity across ecosystems.

While Skate AMM v1 validates the concept with intra-chain swaps and a global pricing
state, our vision for Skate AMM v2 is to enable direct cross-chain swaps, further dissolving
barriers between networks and optimizing liquidity rebalancing. This evolution, under-
pinned by dynamic fee adjustments and coordinated via AVS, will pave the way for a truly
omnichain liquidity protocol—unlocking a new era of interoperable, scalable, and efficient
DeFi.

14

A Formal Derivations and Comparative Analysis

A.1 Unified Pricing and Liquidity Invariants

Skate AMM uses the same pricing invariants as Uniswap v3 for a given price range. Let x
and y be the token quantities within the active tick range and L the liquidity parameter.
The invariant is:

x · y = L2.

For a swap with input ∆x (post-fee), the updated reserve of token X is x + ∆x and the
new reserve of token Y is given by:

y′ =
L2

x+∆x
.

Thus, the output amount is:

∆y = y − L2

x+∆x
.

In Skate, these computations are executed on the global state, where:

x = Xtotal, y = Ytotal,

ensuring that all trades benefit from the aggregated liquidity positions.

A.2 LVR Quantification

Let V0 be the initial value of an LP’s position and Vt its value at time t without continuous
rebalancing. Let Rt be the hypothetical value if the LP had continuously rebalanced. Then,
the Loss-Versus-Rebalancing (LVR) is defined as:

LVRt = Rt − Vt.

For a constant-product market maker, if the price follows a geometric Brownian motion
with volatility σ, the impermanent loss is approximately proportional to σ2. In a unified
pool with total liquidity L, the effective price impact is proportional to ∆x/L. In contrast,
if liquidity is fragmented into N pools (each with L/N), the slippage for a trade of size ∆x
becomes:

∆x

L/N
=

N∆x

L
,

i.e., roughly N times worse. Therefore, the efficiency gain is approximately:

ρ =
LVRSkate

LVRfragmented
≈ 1

N
.

A.3 Dynamic Fee Adjustment Model

Let IXi and IYi denote the local token inventories on chain i. Define the local fractions:

wX
i =

IXi∑
j I

X
j

, wY
i =

IYi∑
j I

Y
j

.

The imbalance on chain i is:
∆i = wX

i − wY
i .

15

We define a fee multiplier as:
Fi(∆i) = 1 + k · |∆i|,

with k > 0. Consequently, for a swap of size q on chain i that removes token X (when X
is scarce, i.e., ∆i < 0), the effective fee is:

fi(q) = f0 · Fi(∆i),

where f0 is the base fee. This dynamic fee mechanism compensates LPs for potential LVR
and incentivizes rebalancing by effectively lowering fees for trades that help restore balance.

A.4 Equilibrium Model for Liquidity Movement

Let Li(t) denote the liquidity on chain i at time t and let Fi→j(t) denote the flow of liquidity
from chain i to chain j. Then:

dLi

dt
=

∑
j ̸=i

Fj→i(t)−
∑
j ̸=i

Fi→j(t).

Assuming LPs shift liquidity when the marginal revenue difference exceeds a cost cij , let
the marginal revenue per unit liquidity be:

vi =
Πi

Li
,

where Πi is the fee revenue from chain i. Then, we can model:

Fi→j(t) = β max{vj(t)− vi(t)− cij , 0},

with β a rate constant. Equilibrium is reached when:

v1 = v2 = · · · = vN = v∗,

ensuring efficient liquidity allocation in accordance with trading demand.

16

A References

References

[1] Adams, Hayden, et al. ”Uniswap: Protocol for Decentralized Exchange.” 2020.

[2] Milionis, Jason, C. Moallemi, T. Roughgarden, A. Zhang. ”Automated Market Making and
Loss-Versus-Rebalancing.” arXiv:2208.06046 (2024).

[3] Milionis, Jason, et al. ”LVR: Quantifying the Cost of Providing Liquidity to AMMs.” a16z
blog, Sept 19, 2022.

[4] Skate Documentation. ”Skate AMM Overview and Design.” 2024.

[5] Skate Team. ”How Skate is Connecting the altVM Future.” Medium, 2024.

[6] Aanes, J.M., et al. ”Automated Market Makers for Cross-chain DeFi and Sharded
Blockchains.” arXiv:2309.14290 (2025).

[7] Milionis, Jason, Xin Wan, and Austin Adams. ”FLAIR: A Metric for Liquidity Provider Com-
petitiveness in Automated Market Makers.” 2025.

[8] Biconomy Team. ”Self Balancing Cross-Chain Liquidity Pools.” 2022.

[9] Catalyst Team. ”Optimising LP Performance Part 2: Dynamic Fees.” 2023.

[10] EigenLayer. ”EigenLayer: An Introduction to the EigenLayer AVS Ecosystem.” 2023.

[11] Thorchain.org. ”How Thorchain Works.” (n.d.).

17

	Context
	Stateless Application Pattern: Kernel–Periphery Model
	Kernel (Hub Chain)
	Periphery (Spoke Chains)
	EigenLayer AVS for State Synchronization
	Execution Network
	Skate token: Alignment and Security

	Protocol Mechanics and Swap Execution
	Skate AMM Representation
	Swap Execution Sequence
	Adding Liquidity Sequence
	Robust Security and Mitigation Strategies

	Liquidity Providers
	LP Benefits in a Unified AMM
	LP Fee Optimization and Global Fee Sharing
	Impact on FLAIR Metric

	Swap Size Limitations and Local Liquidity Constraints
	Chain-Specific Fee Component
	Incentives for Rebalancing Inventory

	Future Vision: Skate AMM v2 and Beyond
	Skate AMM v2: Cross-Chain Extensions

	Conclusion
	Formal Derivations and Comparative Analysis
	Unified Pricing and Liquidity Invariants
	LVR Quantification
	Dynamic Fee Adjustment Model
	Equilibrium Model for Liquidity Movement

	References

